[1] WORLD HEALTH ORGANIZATION(WHO). Global health estimates[R/OL].2020. https://www.who.int/healthinfo/global_burden_disease/en/. [2] BADE B C, DELA CRUZ C S. Lung cancer 2020:epidemiology,etiology,and prevention[J]. Clin Chest Med,2020,41:1-24. [3] 赵呈华. 人工智能辅助诊断系统联合CT检查肺结节的诊断价值[J].实用临床医药杂志,2020,24:9-11. [4] 邵琰,王昊,陈华,等. 影像组学在肺癌中的应用进展[J].中华放射肿瘤学杂志,2019,28(3):230-232. [5] YU H, LI J, ZHANG L, et al.Design of lung nodules segmentation and recognition algorithm based on deep learning[J]. BMC Bioinformat ics,2021,22:314. [6] 明佳蕾,方向明.基于人工智能的CT肺结节检出临床应用及研究进展[J] .中华放射学杂志,2019,53:522-525. [7] LI K, LIU K F, ZHONG Y H, et al.Assessing the predictive accuracy of lung cancer,metastases,andbeni gn lesions using an artificial intelligence-driven computer aided diagnosis system[J]. Quantitative Imaging in Medicine and Surgery,2021,11(8):3629-3642. [8] HE J, BAXTER S L, XU J, et al.The practical implementation of artificial intelligence technologies in medicine[J]. Nature medicine,2019,25(1):30-36. [9] 胡芬. 大数据在医疗行业的应用[J].大众标准化,2020,7: 61-62. [10] NAM J G, KIM H J, LEE E H, et al.Value of a deep learning-based algorithm for detecting Lung-RADS category 4 nodules on chest radiographs in a health checkup population: Estimation of the sample size for a randomized controlled trial[J]. European Radiology,2022,32(1):213-222. [11] ZHAO X, WANG X, XIA W, et al.3D multi-scale,multi-task,and multilabel deep learning for prediction of lymph node metastasis in T1 lung adenocarcinoma patients’ CT images[J]. Comput Med Imaging Graph,2021,93:101987. [12] NAM J G, KIM M, PARK J, et al.Development and validation of a deep learning algorithm detecting 10 common abnormalities on chest radiographs[J]. European Respiratory Society,2021,57(5):2003061. [13] TYAGI S, TALBAR S N.CSE-GAN: A 3D conditional generative adversarial network with concurrent squeeze-and-excitation blocks for lung nodule segmentation[J]. Comput Biol Med,2022,147:105781. [14] HWANG E J, PARK J, HONG W, et al.Artificial intelligence system for identification of false-negative interpretations in chest radiographs[J]. European radiology,2022(7):32. |