欢迎您访问《中华养生保健》官方网站!

中华养生保健 ›› 2025, Vol. 43 ›› Issue (12): 100-103.

• 教育管理 • 上一篇    下一篇

医工交叉时代人工智能在神经外科教学中的应用与挑战

张扬1, 程丹妮2,*   

  1. 1.四川大学华西医院神经外科, 四川 成都, 610041;
    2.四川大学华西医院耳鼻咽喉头颈外科, 四川 成都, 610041
  • 发布日期:2025-10-14
  • 作者简介:张扬(1996—),男,汉族,籍贯:重庆市,博士研究生,助理研究员,研究方向:智能神经外科。

Applications and Challenges of Artificial Intelligence in Neurosurgical Education in the Era of Medical-Engineering Integration

ZHANG Yang1, CHENG Dan-ni2,*   

  1. 1. Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu Sichuan, 610041, China;
    2. Department of Otolaryngology Head and Neck Surgery, West China Hospital of Sichuan University, Chengdu Sichuan, 610041, China
  • Published:2025-10-14

摘要: 在医工交叉迅猛发展的时代,人工智能(Artificial Intelligence, AI)正逐步渗透到医学教育的各个环节,为神经外科教学提供了前所未有的创新机遇。传统的神经外科教学模式受限于学习曲线陡峭、实践资源有限及个体化教学难以实施,而AI技术的应用为解决这些挑战提供了新路径。本研究阐述了当前AI在神经外科教学中的核心应用,包括基于虚拟现实和增强现实的手术模拟训练、智能影像分析辅助教学、自动化手术操作评估等。这些技术能够提升学习效率、优化手术训练,并为学员提供个性化的实时反馈,从而提高教学质量。然而,AI在神经外科教学中的应用仍面临数据隐私保护、技术适配性及教育者接受度等挑战。未来,需要推动医工深度交叉融合,进一步优化AI教学模型,制定标准化教学规范,以确保AI技术在神经外科教学中的可持续发展和广泛应用。

关键词: 人工智能, 神经外科教学, 医工交叉

Abstract: In the era of rapid advancements in medical-engineering integration, artificial intelligence (AI) is progressively permeating various aspects of medical education, offering unprecedented opportunities for innovation in neurosurgical training. Traditional neurosurgical education is constrained by a steep learning curve, limited practical resources, and challenges in implementing personalized teaching. The integration of AI provides new solutions to these challenges. This paper explores the key applications of AI in neurosurgical education, including virtual and augmented reality-based surgical simulation training, AI-assisted medical imaging analysis, and automated surgical operation assessment. These technologies enhance learning efficiency, optimize surgical training, and provide personalized real-time feedback to trainees, thereby improving overall teaching quality. However, the widespread implementation of AI in neurosurgical education still faces challenges related to data privacy protection, technological adaptability, and educator acceptance. Moving forward, it is essential to promote deeper integration between medicine and engineering, further optimize AI-driven educational models, and establish standardized teaching frameworks to ensure the sustainable development and broad application of AI in neurosurgical education.

Key words: artificial intelligence, neurosurgical education, medical-engineering integration

中图分类号: