欢迎您访问《中华养生保健》官方网站!

中华养生保健 ›› 2023, Vol. 41 ›› Issue (21): 11-16.

• 论著 • 上一篇    下一篇

医学人工智能在2型糖尿病健康管理中的应用

冯颖倩, 王梦君, 吕思清, 南静, 张麦浪, 卢卓, 张海雄, 韩雪梅   

  1. 兵器工业521医院内分泌科,陕西 西安,710065
  • 出版日期:2023-11-01 发布日期:2023-10-24
  • 作者简介:冯颖倩(1980—),女,汉族,籍贯:湖北省黄石市,硕士研究生,副主任医师,研究方向:内分泌代谢性疾病的研究。

Application of Medical Artificial Intelligence in Health Management of Type 2 Diabetes

FENG Ying-qian, WANG Meng-jun, LV Si-qing, NAN Jing, ZHANG Mai-lang, LU Zhuo, ZHANG Hai-xiong, HAN Xue-mei   

  1. Endocrinology Department, Ordnance Industry 521 Hospital, Xi'an Shaanxi 710065, China
  • Online:2023-11-01 Published:2023-10-24

摘要: 目的 探讨医学人工智能在2型糖尿病患者长期健康管理中的有效性。方法 选取2020年1月—2021年12月于兵器工业521医院住院治疗后出院的2型糖尿病患者255例,根据随机数表法分为常规组、对照组和试验组,每组85例。常规组仅给予常规出院指导和门诊干预;对照组是在出院指导的基础上,通过医学人工智能软件,由患者自行管理生活和监测血糖;试验组是在对照组的基础上,定期随访指导或门诊复诊,对糖尿病患者进行5个方面综合治疗:糖尿病教育、饮食治疗、运动锻炼、血糖监测、药物调整。6个月后,比较三组血糖控制相关指标、血脂、身体质量指数(BMI)、自我管理能力和满意度的变化。结果 干预后,三组血糖、血脂、BMI指标均明显改善,且试验组、对照组明显优于常规组,试验组指标改善优于对照组,差异有统计学意义(P<0.05);干预后,试验组低血糖发生率较对照组和常规组低,差异有统计学意义(P<0.05)。干预后,三组自我管理能力总分及各维度评分均明显提高,试验组和对照组评分明显高于常规组(P<0.05);干预后,试验组足部护理评分与对照组比较,差异无统计学意义(P>0.05),试验组自我管理能力总分及饮食控制、运动管理、监测血糖、药物使用评分均高于对照组,差异有统计学意义(P<0.05)。干预后,三组的满意度评分均明显提高,试验组和对照组的满意度评分均高于常规组,试验组健康满意度、治疗满意度及医疗服务满意度评分高于对照组,差异有统计学意义(P<0.05)。结论 医学人工智能应用于糖尿病患者长期健康管理,可以改善患者的代谢紊乱及体质量,提高生活质量及治疗满意度,提高血糖达标率,为慢病管理提供一个有效的方法。

关键词: 2型糖尿病, 医学人工智能, 血糖, 健康管理

Abstract: Objective To explore the effectiveness of medical artificial intelligence in long-term health management of type 2 diabetes mellitus patients. Methods A total of 255 T2DM patients who were hospitalized in the endocrinology department of our hospital from January 2020 to December 2021 were randomly divided into three groups: routine group (n=85), control group (n=85) and experimental group (n=85). The routine group only received routine discharge guidance and outpatient interventions, while the control group managed their daily lives and monitored blood glucose through medical artificial intelligence software on the basis of discharge guidance. The experimental group received regular follow-up guidance or outpatient review on the basis of the control group and received comprehensive treatment in five aspects: diabetes education, diet therapy, exercise, blood glucose monitoring, and drug adjustment. Blood glucose control-related indicators, blood lipids, body mass index, self-management capacity and satisfaction were compared among the three groups after 6 months of treatment. Results After 6 months of treatment, the blood glucose (FBG, PBG), glycated hemoglobin (HbA1c), blood lipids, and body mass index of the experimental group were significantly improved compared to those of the control group and the routine group (P<0.05), and the control group was superior to the routine group (P<0.05). Conclusion The Application of medical artificial intelligence in long-term health management of T2DM patients can improve metabolic disorders and weight, increase satisfaction with healthy living and treatment, and improve blood glucose control rate, providing an effective method for chronic disease management.

Key words: type 2 diabetes, artificial intelligence in medicine, blood glucose, health management

中图分类号: